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ABSTRACT

Radiative corrections in grand unified theories based
en N=1 supergravity are studied in the limit MPlanck+° with

the gravitino mass mg fixed, to all crders in perturbation
thecry. In this paper we study the effect of non-gauge
interactions only. It is shown that the tree level mass
hierarchy i3 not destroyed by the radiative corrections,
provided there {s no light field of mass <<« MGUT' which
transforms as a singlet under the subgroup that is unbroken
at a scale above mg. It is also pointed out that in the
minimal supersymmetric sSU(5) model, the addition of
arbitrary soft supersymmetry breaking terms in the
lagrangian do nct, in general, preserve the mass hierarchy,
unless the coefficientsof the soft breaking terms are fine

tuned. The fine tuning is automatic if the supersymmetry

breaking terms come from an underlying supergravity theory.
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I. Introduction

Supersymmetry provides a potential solution to the
hierarch} .pr'oblem1 which led many authors to construct grand
unified models based on supersymmetric theoriesE. However,
since supersymmetry is not an observed symmetry of nature,
it must be broken at a scale of order 100 GeV or more. On
the other hand, i1f we w ant to use supersymmetry to explain

the smallness of the SU(E)weak

®xU(1) breaking scale compared
to the Planck scale or the grand unification scale, the
supersymmetry breaking scale should not be much higher than
about a TeV, at least in the observable sector containing
all the known fields of the low energy theory. An elegant
way of breaking supersymmetry, which is consisteﬁt Wwith most
of the phenomenological constraints, is based on models with
N=1 supergravity coupled to vector and chiral superfields3.
In most of these models the superfields are divided into two
classes, the hidden sector and the observable sector. The
hidden sector contains only gauge singlet chiral
superfields, whereas the observable sector contains all the
gauge fields, the gauge ncn-singlet chiral superflelds, and
may also contain some gauge singlet chiral superfields. The
total superpotential is taken to be the sum of two terms W

H

and W, where WH is a function of the fields in the hidden

sector only, and Wo1is a function of +the fields in the

observable sector only. Ir ¢h and ¢i denote the chiral

superfields in the hidden and the observable sectors



respectively, and zh and Z; denote thelir scalar components,

the tree level potential involving the scalar fields is

given by”,
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where G is the constant of gravitation (1/Mp2) and the sum
over a runs over all generators of the gauge group. The
superpotential WH of the hidden sector 1s assumed to have

- the fbrm,

W, (2,) = |=° $(3 /™M) (.2)

where Mp is the Planck mass and @ Is a mass parameter of

order 1012-1013Gev. In the absence of the observable sector

fields, the potentlal invelving the hidden sector fields is
{0)
h

assumed to have a minimum at z =z

(0),., .3
n , such that WH(zh Y,

This breaks supersymmetry spontaneously, giving the

gravitino a mass,

Mg o= exp (IT&ITIZTY) ewa w,czf)  (3)



which is cf order 100 GeV. We tabke my te be real firn samplicity
In analyzing the full theory we must minimize the full
potentia}t with respect to all the fields to determine the
ground state. The radiative correcgtions in this theory will
involve the fields in the hidden sector as well as the
observable sector, and also the non~-renormalizable
interactions mediated by gravitons and gravitinos.
However, the theory is greatly simplified if we study it in

the 1limit p-oa, MP+W, Wwith mg, and the grand unification mass

M {(which sets the scale of the observable sector
superpotential wg fixed. In this limit, the zh fields are
frozen at the minimum of the potential obtained from WH' and
the effective potential involving the flields 1in the

observable sector is given by,

2
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In real life, however @ 1is smaller than M, and it is
not a priori clear that the effective potential V, given in

{(1.4) has any connection with reality. But as we shall



discuss now, the effective potential given in (1.4) is of
interest due to several reasons.

1) "Hall, Lykken and Weinbepg5 analyzed the problem in a
somewhat different way. They assumed that in the limit of
global supersymmetry, when the hidden and the observable
sector fields are completely decoupled, the observable
sector contains a set of heavy fields with masses of order

M(~1O16

GeV) and a set of massless fields z,. They then
eliminated the fields in the hidden sector, as wWell as the
heavy fields in the observable sector by minimizing the full
potential (1.1) with respect to these fields, and obtained
an effective potential inveolving the 1light fields only. The
effective potential was found to be independent of the heavy
sca;es M and Mp, ani depends cnly on the scale mg. ﬁence the
fieids which were massless in' the supersymmetric 1limit,
acquire a mass of order mg~100 GeV¥, and the hierarchy of
mass scales is not destroyed.

We may alsc start from the theory described by the
potential (1.4) and eliminate the heavy fields by minimizing
the potential with respect to these fields. As we shall
show in Sec.II. the effective potential found this way is
identical to the effective potential found in Ref.5, except
for corrections of order M/Mp in the value of mg . Hence, at
least at the tree level, the effective potential (1.4) is as

good as the full potential (1.1) in finding out the low

energy predictions of the theoryf



ii) The full tree level
expressed
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In order to illustrate the subtleties involved in the
analysis of the problem, let us consider minimal

supersymmetric SU{5) model, given by the superpotential,

s~
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where ¢, H and H belong to the 24, 5 and 5 representations
of SU(5) respectively. In the limit of unbroken

supersymmetry, the potential is given by,
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The pcotential has a minimum at,

<§S>:éim, ‘

<H; > =<H,>=0 (t-10)

The masses of the weak doublet and the color triplet

higgses are respectively,

M, =-2M\, + M, ™My Mo+ M Q1)



and by fine tuning the parameters so that My=2M, A, +0(my), the
higgs doublet mass may be kept much smaller than its color
triplet partner.

Let us now consider the effect of adding an arbitrary

soft supersymmetry breaking term in the Lagrangian, e.g.

- mé' Z [ A Az ¥LJ 3:;& H.J +(A-') MZ HA S’-J }{J] ("’2)
L,d

which are two of the terms in the soft breaking terms given
in  (1.7). If we now minimize the full potential keeping
M2=2M1A2, the soft breaking term (1.12) will produce a large
mass term of the form —mgMZHﬁ for the higgs doublet, By
retuning the parameters M1 and M,, we may keep the mass of
one particular linear combination of H and gt te be of ordeb
mg, but the ortheogonal linear combination will have a mass
of order /ﬁ;ﬁ. When we 1include the effect of radiative
corrections, the mass terms proportional to IH[2 and |ﬁ[2
get renormalized, and hence both the higgs fields acquire
mass of order /E;ﬁ. unless we readjust the parameters of thé
theory. Hence the individual soft breaking terms given in
(1.7) may destroy the hierarchy of mass scales which 1is
present, 1n the supersymmetric limit. However, as we shall
show in Seec,Il, due to a delicate cancellation Dbetween
different terms in (1.7), any mass hierarchy present in the
supersymmetric limit is unperturbed by the soft

supersymmetry breaking terms given in (1.7).

In Sec.III we shall study the effect of radiative



corrections in the theory. In this paper, we only analyze
theories wWwithout gauge interactions. In the 1limit of
unbroken._ supersymmetry, no-renormalization theorems
guarantee that the radiative corrections do not destroy the

tree level mass hierarchy. Various authors7'8

have studied
the effect of supersymmetry breaking on mass hierarchy in
globally and locally supersymmetric models. But there is no
general proof of the stability of the mass hierarchy against
radiative corrections to all orders in perturbation theory.
In this paper we shall analyze the problem by writing down
the most general effective potential in the superfield
formalism. This is done by using a powerful theorem due to
Grisaru, Rocek and Siegelg'10. We show that to all orders in
perturbation theory the radiative corrections generated due
to the soft supersymmetiry breaking terms do not destroy the
hierarchy of mass scales, provided there is no 1light field
of mass of order mg in the theory which transforms as a
singlet under the unbroken symmetry group of the theory.
The instabllity of mass hierarchy in the presence of light
singlet fields has been discussed previously by several

authorsT. We summarize our result in Sec.IV.
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II. LOW ENERGY EFFECTIVE POTENTIAL AT THE TREE LEVEL

We s8hall consider a supersymmetric model with
superpotential W(®), which is assumed to be invariant under
some symmetry group G. We shall denote by zi the scalar

components of the superfields ¢i‘ If supersymmetry 1is

unbroken, the potential involving the scalar flelds is given

by,

Vocz) = Z 129" @)

In this paper we shall ignore the effect of all gauge
interactions, and take G to be a global symmetry gfoup. The
potential (2.1) is assumed to have a supersymmetric minimum
z(io) '

at z.=

i , Where,

PWIZ) = o VoA (zz)
'321

Some of the scalar fields are assumed to have a
non-zero vacuum expectation value (vev) of order M at this
minimum, which breaks the group G to one of its subgroups H.
We shall divide +the scalar fields into the following two
classes:

z,: These are superheavy complex scalars which acquire

A

masses of order M at the minimum of the potential,
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z_: These are light complex scalars which are massless

of
in the supersymmetric 1limit, In a realistic model, zu's
include all the known fields of massg1TeV. Also, since 1in

_ the present discussion G 1is a global symmetry group, the
Goldstone bescns corresponding to the symmetry breaking, and
the scalar Ffields ©belonging to the same supermultiplet as
these Goldstone bosons, are masless and 1ncluded in the =set
Zy In the presence of gauge interactions the Goidstone
bosons are absorbed by the gauge bosons through the higgs
mechanism, whereas thelir partners, belonging to the same
supermultiplet, acquire large mass through the D term of the
potential and Dbecome degenerate with the gauge bosons.
These were considered as a separate class of fields in the
analysis of Ref.5.,

As can be seen ffom Eq.(2.1), the ma$§2 matrix 2t the
minimum of the potential 1is given by th¢ square of the

matrix (32W/az.bz.)| (0). Since z, and z_, denote the heavy
i 73 zZ=7Z *®

A
and the 1ight fields respectively, we have at z=z(0),
2 2
W = W =0 2-3)
22, 325 DE, 2a
%W = ™M ~ M 2%
32, 02 AB @4)

For reasons that will become clear later, we shall
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assume that ncne of the light fields z, is a singlet under

the unbroken subgroup H. Hence,

20 =0 (2-5)
Let - us now introduce explicit soft supersymmetry

breaking terms in the potential of the form,

2
AV =y (A-3) W + Mg T 2 2w 4+ h.C. %+ *mafglzJ

A a2z,
@)

where mg is the gravitino mass, and A 1s a constant of order

unity. The origin of these terms has been discussed in the
introduction. The tctal potential is then given by,
V=V, + AV @e7)

We shall eliminate the heavy fields ZA from the
potential by minimizing the potential with respect toc these
fields, and construct an effective potential involving the
light fields Zy . Following Ref.5 we calculate the effective
potential to order mgu for arbitrary values of the fields Zy
of order mg. Let us express the value of Z, at the minimum
of Vv, for arbitrary values of the fields zdmmg, as,

2o =20+ 20+ 2% - - (2-8)
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gn) is of order mgn/Mn_T. In writing down (2.8), we

__ (o)
A Za

Wwhere Z

have implicitly assumed that z is at most of order

mg. This assumption may be verified at the end of the

calculation. Using Eqgs. (2.1}, (2.6) and (2.7), we get,

Q_V_-_- Z =LY ( _a_g_v.¢_m52—:) +Tn_%(§_‘_’_‘l+mai‘:)
a8

DBy A=K A DBy DE,L B 22
+m, (A-3) W =0 z2-9)
5 € 2% (@

which may be written as,

2N (2w . E*)
A DB 0% 32n+ g A
2 V3 &

- g (A-3) 2¥W 2.0
q 53, (2.10)

Assuming that z —z(OLJm Z ~m and wusing Eqs.{(2.3)

A A gs > gs . '

{(2,4), we may easlly show that the first term on the right

hand side of (2.10) is of order mg3, whereas the second and

the third terms are at mest of order ngM. On the other
hand, (aZW/azBazA) is a non-singular matrix with eigenvalues
of order M. Hence from Eq.(2.10) we get,

2w * m. 2
€N L g Z ~ 2.1t
22a & "R & @11
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Substituting this on the right hand side of Eg.(2.10) we

get,

1]

——

. - o) ¥ 3
22‘ +my zx mé_z(R—B) (M) ag 20" + o (g /™)

2-12)

which gives,

1 (€3] A ] t
(3%,' ) (Z:"ZB)"JZ(BW \ZCB) E:
-]

22, 02, 0%,

e ' €3]] 1k.]
+._=.( W }z« Z, +(__?;3__!~f__ Jz‘g’ 2, +mg (20" 2 )
2 \22, 22, 3% =

, DZg OF
= ™2 M), 2% +0Cmy /M)
- 4 (A’3)( AB & 3 (2.13)
where repeated indices are summed over. Equating terms of

order m_ M c¢cn both sides we get,

) - (o) ¥
2g = - m&(m Vea ZA) (2-""')

Equating terms of order mgz on both sides of (2.13), we get,

[4 - - © \
bl :) = (M ‘)BH {m&z (ﬂ“3) (M ')AC 221* - mé Zf‘)*

3 o) 5O D3Pw .
_l(aw ) ze Zz, _(' )Z?Zq
23, 32,2% 22, 32, 35,

( 2w ) EA% (2.15)

A
Z 32, 32,92
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We may now proceed to evaluate the full effective

potential. Eqgs.(2.1), (2.6} and (2.7) give,

| - |2 1w (2
V=2 | 2W ym. 2,0 +Z [ 2% + gz |
A o2, 3 A X | 2E, 3
H+im, (R-3) W(E, ) + he. g (2-16)
From {(2.12) we see that BW/azA+m Z * is of order m 2,
g A g

and independent of the light fields z,. Hence tne first term
of (2.16) contributes just a constant term to Veff(zﬂ) to

order mgu. The second term in (2.16) may be written as,

* 2
SRR e
o,

where,

[4]]

()] ) . ) .
Weg (Zg) = W (Za= 20 + 2, 20 ) - W (2= 274 2, 2. =0°)

(2 18)

Using Eq.(2.3) we may show that W is of order mga, and

eff
(1)
A

hence {(2.17) 1Is of order mgu. Also since z is independent

of Z, aweff

shows the equality of (2.17) and the second term of (2.16).

/az, is equal to 2W/2az, to order m 2. Tnis
g

Finally the third term on the right hand side of (2.16)

is given to order mgq by,

m, (A-3) T (2) - Weg (B ) + Weg (24)5 + k. C.
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= [y (A-3) T W(ZE,, 2) ~W(Z - 2"+ 2%, 2)§ by (A-3) Weg (& 1]

+h.C. +teams independent of Zy (2 19)
By expanding both W(z z,) and W(z =z(0)+z(1) z, )
A’ % A TA A ? =
about the point zi=z§0), we may reduce (2.19) to,

; U 2)
My (A-3) Weg C(Z4) + My 6-3) (_’ij_ ) 20 Z, thC
'ZZABZﬁ o

+teams independent of 2z, J—CJCHE;/M) (z.20)

Using Eqgs.(2.15) and dropping the constant  terms

(1)
A

(remember that z is independent of z ) we express (2.20) &S,

g (p-3) Weg CZu) ~ Ty (A-3) Ez'( o w ) 20 2.2,
32%:33‘38@ o

32,0292 )a A B

=y (A-3) { Weg (24) - Wz - 2wy @)iihe @21

w(z) and w(1)

where W .¢ eff

are respectively the terms in Weff

quadratic and linear in zﬂ's. (2.21), together with (2.17)

gives the full effective potentlial of the system,



t7

Veg = Z | 2wy my 2217 + Dy (8-3) Twey (24
X

1
- Weg (Z() - 2w, (20§ +he] (z22)
This s identical to the expression for the effective
potential derived in Ref.5.

We may illustrate the significance of the above results
by considering the SU(5) model introduced in Sec.I.
According to the results derived in this section, thé weak
doublet parts of the H, ﬁ fields acquire a mass at most of
crder mg after the introduction of the soft supersymmetry
breaking terms. What really happens is that after we
introduce the supersymmetry breaking terms, the quantity
M[3(¢2-Tr¢2/5)+2M1ﬂ no longer vanishes at the minimum of the
potential, instead it is of order mgM. The first term on the
right hand side of Eq.(1.9) then gives rise to a mass term
of the H, H fields of the form m MHH. This term exactly
cancels the term given in (1.12). This cancellation
requires that the varicus supersymmetry breaking terms have
their coefficients as given in Eq.(1.7), and a small
deviation from this form will produce a large mass of the

weak doublet higgs.
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III. RADIATIVE CORRECTIONS

In this section we shall discuss the effects of
radiative corrections in the class of models discussed in
Sec.II using the superfield formulation. Let ¢i denote the
chiral superfields of the theory. Let us also Introduce a

spurion superfield n, defined as,
2
=My @ (=1}

where 6 , 8 are the fermioniceoordinates ¢of the superspace.
The Lagrangian density of the theory introduced 1in Sec.II

may then be written as,

{({d?6 wed) + o § + S A8 $. +;

~{ $§d6(n ¢ %" + ) ca-3) Wib)) + heC§

A

- &6 &8 T b ¢ @2)

Wwhere the terms invelving = are the explicit soft
Supersymmetry breaking terms. The potential involving the
scalar fields obtained from the Lagrangian density (3.2} may

be written as,

'-Z-F.)‘_+ F.L - ;(F}u g +H.C-)

A

b 2
g (T2 29+ (A-3) W@ FHhec] 4 my? 2l

A~

@3)
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Wwhere Fi’s are the auxiliary components of the superfields,
Elimination of Fi's thrcugh their equations of motion gives
the potential VO+AV given in Egqs.{(2.1} and (2.6).

Before proceeding further, we shall make some
rearrangement of varicus terms. Let zgc) denote the point
at which the potential (3.3) has its minimum with respect to
all the fields z, and z,. We may then consider perturbation

A
(e)

expansion around the point zi . Let us define,

A (c)
Ei; = & - 23. C3-9)

By straightforward algebraic manipulation, the full

potential (3.3) may be brought into the form,

+
-2 (K -my 2F)T (€ -z

, o) (e) ¥
- F - g & AW L e 297 ) + heC
%; %.( i g A )(‘525-+ 3 E

+m, {2 2 2W L (A-3)1 W(Z) +heg
L

ey
2 2 ), 2 )
+ Ty (%l?ﬂ - LZIZ?* | (3-5)
Let us define,
AFJ_;; = F,— mg Z @-¢)

Faa A Fa¥
Wz ) = wiz)+mg 29% Z, (3-7)
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Then the potential (3.5) may be written as

- ’r.\i*

T

A A

-2 (F 2% ko)

Fme $Z 2, 29 + (a-3)w(E) +hC ]
< 2Z;

2

+ mézz |2, 1% + Constant teams G- 2)

A

The first two terms in (3.8) may be interpreted as
coming from a supersymmetric theory with superpotential ﬁ.
The other terms are expliclt scoft breaking terms in the
model. Since ﬁ and W differ from each other by a linear
term, they give rise to the same scalar-fermion Yukawa
coupling. If ¢i dencte the superfields of the original

model, then we define,

A

P, = b - Zf" (3-9)

The action may then be written as,
~ A -~ ~
? S 426 W) +h.c.§ + (d'e & b

-5 $d%e q (% %% + (p-3) wWCe)) +h.c.3

*

- _g e e =) ;f n &i' 4&- (3_10)
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The structure c¢f radiative corrections in this theory
is constrained by a theorem due tc¢ Grisaru, Rocek and
Siegelg."'The theorem states that the effective action
generated by radiative correcticns in the theory must be of

the form,

5 ar d'x;) MO Fee x;,0),709)) @-1)

where f i8 a polynomial in the superfields ¢i' $i,q , 0 and
their covariant derivatives, but does not contain any
explicit dependence on © or 9 . Note that the effective
action, although a non-local function of the xj's, is a
local function of @, since it involves product of fields at
the same fermionic coordinates 9,8 , This theorenm, together

with +the rules of iIntegration o¢over the anti-commuting

numbers ¢,

fdec=0 (cde =1 | (3.12)

restricts the possible radiative corrections in the theory.
Since the & and ® integrals in {(3.11) must be saturated
according to the rule of integration given in (3.12), the

pessible radiatively induced terms must be of the form F.F.,

oG

t
i
FIq, 1 Fi’ q*n s Oor terms involving higher powers of i

and/or Q11, multiplied by arbitrary functions of the scalar

fields. Hence we may write the radiatively induced
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effective potential as,

EtE 5 2Y) - F oa.cz, 2t :
FHE R 2, 2Y) - my TF g.cg2h e had
+m52 ¢z, 2Y) + 0¢CF?) (3.13)

where f, g and h are polynomials in the scalar components of
the superfields. For the time being, we shall ignore the
O(g ) term in the effective potential. It will be argued
later that these terms do not destroy the mass
hierarchy.

Taking the full potential as the sum of (3.8) and

(3.13), and eliminating the F, fields through their

equations of motion, we get,

~ AA * - ~ AA
V=2 oams 3. (2, 85 (@en)y; T 2¢ +my 3¢ 28

A J

+mg { Z & g_g F(A-3) W@ ERC]

A

syt ez izt $c2.2N% (3-14)

dropping the constant terms in the potential.

The functions f, gi and hij have mass dimensions 2, 1
and 0 respectively. Hence, in general, the functions h, g,

r, agi/azj and Bf/azi will at most be of order unity, M, M2,

unity and M respectively, upto factors of logM and logMp
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This {s true wunless the graphs contributing to these
functions have power law infrared divergence in the mg+o
limit, in which case we may get extra powers of M/mg. It can
be shown that such infra-red divergences are absent in the
class of theories being analyzed here12

Besides satisfying the bounds estimated from pure

dimensional analysis, af/aza and g4 satisfy the hounds,

< m < m 315

due to the following reason. Since the potential must be
invariant under the unbroken subgroup H of G, and none of
the fields za,transform as singlets under H (as we have
assumed) both g, and af/aza must transform non=trivially
under H. Hence both of them vanish at 2,70, and must be of

order za;mg for non-zero values of z

ot
We now minimize the potential with respect to the

fields z, (or ZA)' This gives,

> [ (22W +m&33a (IH\)-.i. (‘_Bﬁvg +me g, (2, 2*))

[

i3 32 274, az,\ k)

J

-1 ~
+ @-'“"‘)ij (g—\f:v +7""58J‘)

dZ, Z;

3

v
¢

+(

|

Py 8;) 2T S (38 1myg))]

A~ A 5

¢
>



+ m (aw+2 w4+ (A-3 éw 2
F gy T T Thog el @-3) )J'mé (2,5 + 2 )O

(3-:6)

which may be written as,

W 4o, 28 (14 2W *
W | e &

=% Goh) e ( azwz‘: Ty 280 ) (2% 4 myg g.)

B 32, > 2Za 2Zs
-2 (T+h 22W_ 4, 288 ) AW 4 m )
( )O(B <éEAaZB >2a (32« agd
—Z (I-Hm) 52N +Ynéa‘8p)(aw+ﬁa%)*

az, 3Zp d32Za | o

cmg > 285 @en) (2 4 myga:)
5” SZ, ( ) é;,+ \q

-2 @ K)N} (9W+rh58) (%% + g &)

t,d & .
» Zﬁ\ 5

'mg(é—‘é-"-FZ% azwh+(ﬂ*3\§f—‘/)

- Théa (2 + 25 ) 317)

We may solve these equations to find Z, as a function

of the fields Zg and substitute these values in (3.14) in

order to find the effective potential as a function of z4-
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We solve these equations by iteration as in Sec.II. We

start from the ansatz,

A '

F
ow | Mg 34~ My Y A (318)
D2,

Using Eg¢gs.{2.3), (3.7), (3.15) and (3.18) we may show that

the right hand side of (3.17) is of order mgzM, the terms of

crder mgzM being given by,
-2 (T4hi g Mag (28 4 m, g )"+ my® (2% g, ) (A2
B, X xXE AB OZ, + Mg <)+ T3 A t3a

A
—_ 2 {®)
- FTX; %; Za Mag Trg CE?A * +é%§ ) Ez.rqu Ya
A

@-19)

In deriving the above equation we have wused the

relation,

SwW - 8;; - (o7 % 2
532, o ™3 “a =-my (& +8a) +0lmg)

= my? Y, + 0(mg”) (3-21)



26

which may be solved as,

o~
(2W 4+, 8,)" g (@R MY Y, (= 22)

2%
[(I+h)'1M]AB is a non-singular matrix13 with eligenvalues of
order M, Hence the right hand side of the egquation is of

order mgz, which shows the validity of the ansatz (3.18). We

may now try to solve Eq.(3.22) by expanding zA as in

Eq.(2.8). Eg.{(3.22) gives,

azw 1) 27 o) )
(25} €20 2) w2 ) 2%
324 324 )o 52, 22, 32, .
3 \
+(__§JQL__ ) z;’ ” .+|( ]-Z E%
IFy 35, 3T 32, az 3%,

° {o) ,(" - (o)
+ g CESN L Z0%28) ey (S @)+ Falz,+ 2y z)-&s ))

= m(gz[(ﬂk)"'ml-;s ¥y + O (mg/m)

@.23)

which gives,

Q) .t o)
Z, =-mg(M) e (29" 4 g, z™)) (3-24)



Z(Z) - (M-') Em 2 T4 -1 -1 1 B RV ) _tn)
A AB 3 {( h) Mgea 3 Z(QZBQECAZ,,)Z ‘

3
- _ 3w 2" z —-'-(__B___w__ )z 2 - (2% z ¥
(az,:;zc 2z, ¢ % *\ez, sz 8] 7P (2 ® )

As" (88 CZ?*‘Z:J; Z) - 3a (zso:))] (3.25)

Eq.(3.24) shows that zi1) is independent of the light

211 g )

fields z,. Thus 2 B must also be independent of

zx- Thus the only z, dependent term in yA to order M comes

from the first term on the left hand side of Eq.(3.19). As

2(2)

in Sec.II, only the z, dependent part of is relevant in'

calculating ¢the effective potential to order mgu. Hence we

may now substitute the values of zi1)

(2)
A

and the 2z, dependent

part of =z in {(3.14) and calculate the effective potential

as in Sec.II. Here we shall show that ¢this effective
potential is at most of order mgu for zuwmg, 30 that the
tree level hierarchy is not destroyed by radiative
corrections. As can be seen from (3.22), (aﬁ/azB+mggB) is

of order mgz, hence the first term on the right hand side of

(3.14) is of order mgu. Contribution from other terms to

3

order mg M may be obtained by expanding various terms around

the point z =z§0). This contribution may be written as,

i

: < [} (e} b
M. (A-3 A/ 2°W =z e < 2 5 ¢ ok , :
%3 (A-3) ¢ Z(aa azg), o Ty ¥R g-{mE (25748, E)HhC

o 42 (o ¢ ¢l
ot LR 45 s Capeay e () o]

+mg (A-3){wz?) + hef + O ¢my ") (3-2¢)
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However, since zég) is independent of the light fields
z,» each of the terms in (3.26) is independent of z,. Hence
the effegtive potential involving the fleld Za is at most of
crder mgu, showing that the radiative ceorrections do not
destroy the tree level mass hierarchy.

Note that the absence of light singlets is crucial in
our analysis. If some of the fields z, are singlets of the
group H, the corresponding ga and Bf/Bza may be of order M,
This will give contribution of order mg3M or more t¢ the
effective potential from the ]aa/3z0+mgga|2 term, as well as
the (Bflazm)z(Jl term In the Taylor series expansion of f.

Finally we shall comment on the terms of order 53 in
(3.13). We may include the effect of these terms by solving

for F iteratively, the 0(53) terms being 1ignored at the
2
g ]
1s seen from Eq.{(3.18) and a <corresponding expression for

first stage of iteration. This gi#es a sclution Ei-m as

BW/Bza+mgga. If we substitute this value of F in the next
stage of iteration, the order F3 terms contribute at most to

O(m 2
g

) in the new value of F and O(mgu) to the potential.
Also, since BEI/EZJSWL the derivative of this new term with
respect to Z, contribute at most a term of order mgzM on the
right hand side of Eq.(3.17). Hence it does not upset any
of the results obtained at the first stage of iteration, and

the mass hierarchy 1s maintained.
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IV. CONCLUSION

In this paper we have studied radiative corrections 1in
a supersymmetric theory with soft breaking terms induced by
N=1 supergravity. We consider models where the 1low energy
theory 1is invariant under some group H and none of the
light fields transform as a singlet of this group. Also in
this paper we consider theories without any gauge fields.
For this class of models, any hierarchy of mass scales,
present in the limit of unbroken supersymmetry, is shown to
be preserved after the ineclusion of the supersymmetry
breaking terms at the tree level, and alsoc after inclusion
of radiative corrections to all orders in the perturbation
theory.

Although the absence of gauge fields and light singlet
fields 1is a sufficient condition for the stability of mass
hierarchy, it 1is, by no means, a necessary condition.
However, the analysis becomes considerably more complicated
in these cases. In particular, when gauge fields are
present, the theorem of Ref.9, as expressed in Eq.{(3.11), is
no longer sufficient to prove the stability of the mass
hierarchy. We must also use the supersymmetric

Slavnov-Taylor identities14

of gauge invariance in order to
restrict the possible form of the effective action. Work
towards this direction is in progress.

The effect of light singlets in grand unified theories
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based on N=1 supergravity has been discussed by Nilles,
Srednicki and Wyler and by LahanasT. They showed that the
presence, of trilinear coupling between one light singlet of
mass of c¢rder mg aﬁd two heavy fields of mass of order M in
the superpcotential destrcoys the mass hierarchy. This rules

out the use of sliding singlet mechanism15

to keep the weak
doublet higgs light compared to its color triplet partner in
SU(5) grand unified theories. The problem may be avoided in
a class of SU(6) grand unified theories in which the sliding
singlet acquires a mass of order /5;516. In these models,
the problems indicated in Ref.7 are absent, although an all
order probf of the stability of mass hierarchy is still
lacking.

Finally we should mention that in the analysis given in
this paper, we have Jignored the terms in the tree level
Lagrangian which have explicit powers of M in the

p
denominator (except those which come in the combination

u3/Mp2~mg). If we want to include these terms in our

analysis, we must also include the effect of 1loop
corrections involving the gravitons and the gravitinos for
consistency. At present there is no known way to take these
corrections into account, since the N=1 supergravity
theories are neither renormalizable nor finite. Hence for
the time being we have to be satisfied with the fact that in

-1

the zeroth order term in the expansion in powers of Mp

the radiative corrections do not destroy the mass hierarchy



to all corders in the loop expansion.
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